A Molecular Level of Approach

What if you could visit a place where the quantum laws are obvious? Where people and objects behave like tiny atoms and particles?”

Quantum Leap: The Fabric of the Cosmos explains the reality from a molecular level. To make a better sense of this, let me share to you some insights I gained. So Quantum Mechanics tells us that electrons don’t like to be tied down to just one location or follow just one path. One might even bump through another. Niels Bohr explained that when an atom is heated, electron at ground state becomes agitated that it leaps. With electrostatic force, the electron is pulled back to its first orbital emitting light at specific colors. These spectral lines are the energy given off by electrons leaping between an atom’s orbitals. But electrons goes directly from one orbital to another without moving through the space in between. Bohr believed that the energy of electrons and atoms comes in discrete values called “quanta”. Moreover, electrons sometimes act like particles and sometimes act like waves. This is what the double slit experiment shows. When shot through two narrow slits at a detector, some electrons go straight through (as a particle would) and others exhibit an interference pattern (as a wave would). The pattern formed led us to Max Born’s saying that “electrons are a probability wave”.

Another important concept in the movie is Quantum Entanglement. Entanglement occurs when a pair of subatomic particles interact physically and then become separated. But entangled particles are linked across space. Measuring one instantly affects its distant partner, as if the space between them didn’t exist.

The Quantum Mechanics though debunked and criticized by some such as the famous Albert Einstein, has always been right and used for more than 75 years to predict how atoms and tiny particles behave.

Quantum Leap: The Fabric of the Cosmos is the movie that left me thinking. It wasn’t like any of those movies with happy or sad endings; where a Princess gets to finally meet his Prince charming or where a hero faces death in the end. I must admit that I am not 100% sure as to what extent my understanding of Quantum Mechanics is correct. But it is when things are uncertain that we hope and bring ourselves even closer to fully understanding things. And I believe that this is what makes theories persist. No matter how consistently true Quantum Mechanics has proven to be, scientists are still struggling to figure out completely the rules of the quantum world. What we thought we knew about our universe is wrong and this opens us up to new possibilities, taking us beyond the celestial and macroscopic level.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s